
Dynamically serving REST endpoints for database
stored procedures with FastAPI

Kim van Wyk

PyconZA 2023

5/6 October 2023

What is this about?

• My employer has a large number of Microsoft SQL Server
stored procedures

• The heart of several important backend systems
• Built up over many years
• Battle-hardened and extensively debugged and developed
• Reliable and well-understood means of effecting controlled,

auditable system changes
• Consistently defined - documented params in, Msg param out

Accessing with other systems

• Would be beneficial if internal or third-party software could use
these stored procs

• No need to reinvent a perfectly good wheel
• Direct access would require DB host access and credentials

(albeit limited).
• This does not delight security teams or DBAs (completely

validly)
• Many systems don’t understand SQL or stored procs

• REST endpoints would do nicely
• Greatly understood and supported by other systems
• Securable
• Swagger and similar make for good discoverability

Chosen approach

• FastAPI and underlying Pydantic models
• Provides the REST benefits out of the box
• Can be dynamically generated to cater for changing stored procs

• Turned out to be completely doable but not as smoothly as
hoped

• Stored proc query
• Dynamic FastAPI endpoints
• Generated FastAPI code
• Dockerisation

https://fastapi.tiangolo.com/
https://pydantic-docs.helpmanual.io/

Retrieving stored proc details

• As would be expected for such a venerable and well-used
technology, querying needed details about the stored procs is
fairly easy

USE database;
SELECT o.name AS [proc_name], par.name AS [param_name],
types.name AS [param_dtype], par.is_output AS [is_output]
FROM sys.objects o
JOIN sys.schemas s ON o.schema_id = s.schema_id
INNER JOIN sys.procedures p ON o.object_id = p.object_id
INNER JOIN sys.parameters par ON par.object_id = p.object_id
INNER JOIN sys.types ON par.system_type_id = types.system_type_id
AND par.user_type_id = types.user_type_id
WHERE o.type_desc = 'SQL_STORED_PROCEDURE'
AND s.name = schema
ORDER BY s.name, o.name, par.name

Query result

proc_name param_name param_dtype is_output

Proc1 @Param1 int 0
Proc1 @Param2 varchar 0
Proc1 @Param3 varchar 1
Proc2 @Param1 datetime 0
Proc2 @Param2 decimal 1

Dynamic FastAPI endpoints

• First plan was to dynamically generate FastAPI endpoints from
a SQLAlchemied query result

• Pydantic’s create_model method could create input and
output models

• Could not find a reasonable way to have FastAPI use such
Pydantic models

• examples and documentation all refer to already-existing named
models

• Some clever solutions in discussions in GitHub issues
• More Pythonic naval gazing than I was comfortable putting

into my code

https://docs.pydantic.dev/usage/models/#dynamic-model-creation

Plan B: code generation to the rescue

• Enter the Jinja2 templating engine
• Commonly associated with Django HTML templating
• Can be run standalone to generate any text

• Templates to generate Pydantic models.py and FastAPI
main.py files are not overly complex

https://pypi.org/project/Jinja2/

Models template

{% for (name,mods) in models.items() %}
{% for (direction, params) in mods.items() %}

{% if params %}
class {{ name }}{% if direction == "in" %}InputModel

{% else %}OutputModel{% endif %}(BaseModel):
{% for (field, types) in params %}{{ field }}: {{ types[1] }}

{% if direction == "out" %} = None{% endif %}
{% endfor %}_db_fields: dict = PrivateAttr()

def __init__(self, **data):
self._db_fields = {

{% for (field, types) in params %}
"{{ field }}": {{ types[0] }},

{% endfor %} }

Resulting models file

class Proc1InputModel(BaseModel):
Param1: int
Param2: str
_db_fields: dict = PrivateAttr()

def __init__(self, **data):
self._db_fields = {

"Param1": XX,
"Param2": XX,
}

class Proc2OutputModel(BaseModel):
Param3: str = None
_db_fields: dict = PrivateAttr()

def __init__(self, **data):
self._db_fields = {

"Param3": XX,
}

FastAPI template

{% for (name, mods) in models.items() %}
@app.post("/{{ name }}")
def {{ name }}({% if mods["in"] %}

input_model: models.{{ name }}InputModel{% endif %}):
{% if not mods["in"] %}input_model = None{% endif %}
output_model = {% if mods["out"] %}

models.{{ name }}OutputModel(){% else %}None{% endif %}
try:

om = DBH.exec_stored_proc("{{ database }}.{{ schema }}.{{ name }}",
input_model, output_model)

except db.StoredProcError as e:
raise HTTPException(status_code = 400, detail = str(e))

return om
{% endfor %}

Resulting FastAPI file

@app.post("/Proc1")
def Proc1(input_model: models.Proc1InputModel):

output_model = models.Proc1OutputModel()
try:

om = DBH.exec_stored_proc("db_name.schema.table",
input_model, output_model)

except db.StoredProcError as e:
raise HTTPException(status_code = 400, detail = str(e))

return om

• Small swagger demo goes here

Dockerisation

• Multi-step process lends itself well to Dockerisation
• RUN layers to generate the code
• ENTRYPOINT to execute the resulting code in FastAPI

• If stored procs change the image just needs to be re-deployed

Potential improvements, benefits and lessons learned

• Reading doc strings from stored procs and serving them in
endpoints

• Stored procs could be seamlessly replaced with a different
underlying system

• Consistent and well-structured stored procs aren’t as common
as they should be - thank your DB teams if yours are

• Code generation can be less complex than you may think
• A syntax highlighting text editor is really handy for this kind of

thing

And finally

• This talk is a fleshed out version of a blog post I wrote some
time ago

• Slides and source in this GitLab repo
• Thank you for listening

• vanwykk@gmail.com
• @kimvanwyk in the conference Discord

https://kimvanwyk.co.za/dynamic-stored-proc-endpoints/
https://kimvanwyk.co.za/dynamic-stored-proc-endpoints/
https://gitlab.com/kimvanwyk/pyconza2023-talk

