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What are we talking about?



The last six months…

scriv.ai



LangChain



A RAG bot

You can try this here if you want: https://scriv.ai/a/scriv/bots/b/pg-bot/chat/ 

https://scriv.ai/a/scriv/bots/b/pg-bot/chat/


For comparison with normal GPT4



How does this work?



What it isn’t

Chatting with a document

Model training

Fine-tuning

(These things are all good and useful, just not what this talk is about).



Retrieval Augmented Generation

Retrieval augmented generation, or RAG is the process of supplementing a user’s 
input to a large language model (LLM) like ChatGPT with additional information that 
you have retrieved from somewhere else. The LLM can then use that information to 
augment the response that it generates.



Retrieval Augmented Generation Overview



Augmented Answer Generation



Retrieval Augmented Generation Overview



Anatomy of ChatGPT

System Prompt Messages (Model Params)



Anatomy of Augmented Answers

Explain the Task

Question

Documents



Or in code



Back to the overview



Retrieval



Back to the overview



The Retrieval Step



Two big picture pieces:

1. Indexing: Turning your knowledge base into something that can be 
searched/queried.

2. Querying: Pulling out the most relevant bits of knowledge from a search term.

Any search operation works, but most RAG systems use something called semantic 
search, which uses another core piece of AI technology: embeddings.

Retrieval is Search



A Detour: Embeddings



How do we know what words mean?

“Child” == “Kid”

“Red”, “Green”, “Blue” ∈ {“Colors”}

“Pleased” <  “Happy” < “Elated”



Embeddings: a computer’s version of “meaning”



Embeddings: a computer’s version of “meaning”

We don’t know what these 
numbers mean.

But we can plot them.

And the closer they are the 
more “similar” they are.

This is “semantic search”



Retrieval with Embeddings (Indexing)

Assume we have a way to split up our 
knowledge base (we’ll come back to 
this)

Then pass each snippet through our 
embedding machine and save it, with 
its embedding in a vector database.



Our Knowledge Base in Embedding/Vector Space



Retrieval with Embeddings (Querying)

First get the embedding for our 
question.

Then plot it.



Retrieval with Embeddings (Querying)



Vector Databases

Source: https://blog.det.life/why-you-shouldnt-invest-in-vector-databases-c0cd3f59d23c

Just use Postgres
(probably)

https://blog.det.life/why-you-shouldnt-invest-in-vector-databases-c0cd3f59d23c


Back to the Overview



Back to LangChain

We’ve now covered this line

But what about these ones?



Building the knowledge base



Back to Indexing

But what’s happening here?

We covered this



Building the knowledge 
base is the most 
important part of the 
whole thing.

It’s probably where 95% 
of the work happens.



Two conceptual pieces

Loading: Getting the contents of your knowledge base out of wherever it is 
normally stored.

Splitting: Splitting up the knowledge into snippet-sized chunks that work well with 
embedding searches.

In LangChain these steps are handled by tools called loaders and splitters.



Examples: scraping websites, extracting text from documents, consuming APIs, etc.

Loading is plumbing



LangChain loaders

https://python.langchain.com/docs/integrations/document_loaders/

https://python.langchain.com/docs/integrations/document_loaders/


Splitting is also plumbing, but it’s harder to get right

Examples: break on pages, break on section headings, break after a certain 
number of words, etc.



Why do we need to split our documents?

Recall how we are doing retrieval.

Too big and the location of the 
embedding gets less meaningful.

Too small and there’s not enough 
information to answer the 
question.



The whole indexing process



The whole RAG Pipeline

Indexing: We first load, split, 
embed, and save our knowledge 
base and embeddings in our 
vector DB.

Retrieval: A question is embedded 
and the closest matching 
knowledge snippets are pulled out.

Augmented Generation: The 
question and snippets are 
formatted and sent to the LLM to 
get our context-specific answer



Congratulations, you now understand this code!



Optimizations



More complex embeddings

There is no rule that says the embeddings have to exactly match the knowledge 
snippets, or even be 1:1 with them.



Adding metadata

Idea: Instead of just embedding the 
snippet, also attach metadata.

Imagine a bot to help navigate visa 
paperwork.

You could add more context to every 
document snippet. E.g:

● Country: South Africa
● Visa Type: Critical Skills

Now the bot will do much better at 
answering questions like “do I need 
police clearance for a critical skills visa 
in South Africa?”



Adding other LLM-generated content

Idea: Instead of just embedding 
the snippet, use an LLM to 
generate alternate embeddings.

For example:

“Summarize this document.”

“List ten questions that this 
document answers.”



More complex retrievers

There is no rule that says the retrieved snippets are all that you send to the LLM.



Expanding the retrieved snippets

Idea: once you’ve retrieved knowledge 
snippets, do post-processing to add 
surrounding context.

 



Advanced index/querying

Llama Index has keyword extraction, trees-based querying, and more.

(don’t ask me how this works)



Questions?

Text version of this talk: https://scriv.ai/guides/retrieval-augmented-generation-overview/ 

https://scriv.ai/guides/retrieval-augmented-generation-overview/

