
How do domain-specific
chatbots work?

An overview of Retrieval Augmented Generation (RAG)

Cory Zue | @czue
Founder of SaaS Pegasus and Scriv.ai

What are we talking about?

The last six months…

scriv.ai

LangChain

A RAG bot

You can try this here if you want: https://scriv.ai/a/scriv/bots/b/pg-bot/chat/

https://scriv.ai/a/scriv/bots/b/pg-bot/chat/

For comparison with normal GPT4

How does this work?

What it isn’t

Chatting with a document

Model training

Fine-tuning

(These things are all good and useful, just not what this talk is about).

Retrieval Augmented Generation

Retrieval augmented generation, or RAG is the process of supplementing a user’s
input to a large language model (LLM) like ChatGPT with additional information that
you have retrieved from somewhere else. The LLM can then use that information to
augment the response that it generates.

Retrieval Augmented Generation Overview

Augmented Answer Generation

Retrieval Augmented Generation Overview

Anatomy of ChatGPT

System Prompt Messages (Model Params)

Anatomy of Augmented Answers

Explain the Task

Question

Documents

Or in code

Back to the overview

Retrieval

Back to the overview

The Retrieval Step

Two big picture pieces:

1. Indexing: Turning your knowledge base into something that can be
searched/queried.

2. Querying: Pulling out the most relevant bits of knowledge from a search term.

Any search operation works, but most RAG systems use something called semantic
search, which uses another core piece of AI technology: embeddings.

Retrieval is Search

A Detour: Embeddings

How do we know what words mean?

“Child” == “Kid”

“Red”, “Green”, “Blue” ∈ {“Colors”}

“Pleased” < “Happy” < “Elated”

Embeddings: a computer’s version of “meaning”

Embeddings: a computer’s version of “meaning”

We don’t know what these
numbers mean.

But we can plot them.

And the closer they are the
more “similar” they are.

This is “semantic search”

Retrieval with Embeddings (Indexing)

Assume we have a way to split up our
knowledge base (we’ll come back to
this)

Then pass each snippet through our
embedding machine and save it, with
its embedding in a vector database.

Our Knowledge Base in Embedding/Vector Space

Retrieval with Embeddings (Querying)

First get the embedding for our
question.

Then plot it.

Retrieval with Embeddings (Querying)

Vector Databases

Source: https://blog.det.life/why-you-shouldnt-invest-in-vector-databases-c0cd3f59d23c

Just use Postgres
(probably)

https://blog.det.life/why-you-shouldnt-invest-in-vector-databases-c0cd3f59d23c

Back to the Overview

Back to LangChain

We’ve now covered this line

But what about these ones?

Building the knowledge base

Back to Indexing

But what’s happening here?

We covered this

Building the knowledge
base is the most
important part of the
whole thing.

It’s probably where 95%
of the work happens.

Two conceptual pieces

Loading: Getting the contents of your knowledge base out of wherever it is
normally stored.

Splitting: Splitting up the knowledge into snippet-sized chunks that work well with
embedding searches.

In LangChain these steps are handled by tools called loaders and splitters.

Examples: scraping websites, extracting text from documents, consuming APIs, etc.

Loading is plumbing

LangChain loaders

https://python.langchain.com/docs/integrations/document_loaders/

https://python.langchain.com/docs/integrations/document_loaders/

Splitting is also plumbing, but it’s harder to get right

Examples: break on pages, break on section headings, break after a certain
number of words, etc.

Why do we need to split our documents?

Recall how we are doing retrieval.

Too big and the location of the
embedding gets less meaningful.

Too small and there’s not enough
information to answer the
question.

The whole indexing process

The whole RAG Pipeline

Indexing: We first load, split,
embed, and save our knowledge
base and embeddings in our
vector DB.

Retrieval: A question is embedded
and the closest matching
knowledge snippets are pulled out.

Augmented Generation: The
question and snippets are
formatted and sent to the LLM to
get our context-specific answer

Congratulations, you now understand this code!

Optimizations

More complex embeddings

There is no rule that says the embeddings have to exactly match the knowledge
snippets, or even be 1:1 with them.

Adding metadata

Idea: Instead of just embedding the
snippet, also attach metadata.

Imagine a bot to help navigate visa
paperwork.

You could add more context to every
document snippet. E.g:

● Country: South Africa
● Visa Type: Critical Skills

Now the bot will do much better at
answering questions like “do I need
police clearance for a critical skills visa
in South Africa?”

Adding other LLM-generated content

Idea: Instead of just embedding
the snippet, use an LLM to
generate alternate embeddings.

For example:

“Summarize this document.”

“List ten questions that this
document answers.”

More complex retrievers

There is no rule that says the retrieved snippets are all that you send to the LLM.

Expanding the retrieved snippets

Idea: once you’ve retrieved knowledge
snippets, do post-processing to add
surrounding context.

Advanced index/querying

Llama Index has keyword extraction, trees-based querying, and more.

(don’t ask me how this works)

Questions?

Text version of this talk: https://scriv.ai/guides/retrieval-augmented-generation-overview/

https://scriv.ai/guides/retrieval-augmented-generation-overview/

