
Making Jupyter Notebooks Less Awful

Laura Richter, PyConZA 2023

"move the computer to the data"

"de facto
standard"

"computational
narrative"

"powerful connections between
topics, theories, data and results"

"Interactive
computing"

"killer app for
teaching

computing"

"Such tools foster computational
reproducibility by simplifying code reuse."

"Jupyter notebooks also encourage poor coding practice … by
making it difficult to organize code logically, break it into reusable

modules and develop tests to ensure the code is working properly."

"notebooks do require discipline"

"Because Jupyter Notebooks are a relatively recently-developed tool, they don’t
(yet) follow or encourage consensus-based software development best practices."

"Data scientists, typically collaborating on a small project that involves
experimentation, often feel they don’t need to adhere to any engineering

best practices."

So why use Jupyter?

Prototype, Experiment,
Present, Teach, Learn,

Taking your compute to the data,
Anything that needs a visual result

So why use Jupyter?

2020 Jupyter Survey

When do you need good practice?

… larger project … many engineers …
… scaling … deployment …

When do you need good practice?

… larger project … many engineers …
… scaling … deployment …

Anything you
need to be correct

When do you need good practice?

… larger project … many engineers …
… scaling … deployment …

Anything you
need to be correct

 Stolen from "I don't like Notebooks", Joel Grus, JupyterCon 2018

So how do we make Jupyter Notebooks more correct?

1. "Follow established software development best practices"(*)
2. Version control & Reviews
3. Testing
4. Automating testing and quality control
5. Dependency management
6. Data management

(*) https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-any-developer-using-jupyter-notebooks

Where are you running your Jupyter?

datasciencenotebook.org

Yourself Local Jupyter, Local JupyterLab, JupyterHub, VS Code

Lightweight hosted Binder, Google Colab, Kaggle Kernels…

Mediumweight hosted Deepnote, Saturn Cloud, Jetbrains…

Enterprise hosted Amazon Sagemaker, Google Vertex AI workbench, Databricks
notebooks, Azure ML studio, VS Code (!)...

Niche Paperspace Gradient, Cocalc, Mode analytics, naas.ai…

Where are you running your Jupyter?

1. Tools for software development good practice

Why? My code doesn't need to be pretty. Move fast, experiment! No time for aesthetics!!

1. Tools for software development good practice

Why? My code doesn't need to be pretty. Move fast, experiment! No time for aesthetics!!
Answer: Code is read more often than it is written AND style best practice supports quality

1. Tools for software development good practice

● Write clean code (resources at the end of this presentation)
○ DRY, meaningful variable and function naming, modularity, explicit imports

● Move functions from Notebooks into modules (where appropriate)
● Python Style Guide (PEP8)
● Zen of Python

Tools:

● Code quality: isort, flake8, black, sqlfluff, …
● Specific to Notebooks: nbqa
● Linting and formatting

1. Tools for software development good practice

1. Tools for software development good practice

Tools:

● Code quality: isort, flake8, black, sqlfluff, …
● Specific to Notebooks: nbqa
● Linting and formatting

1. Tools for software development good practice

Tools:

● Code quality: isort, flake8, black, sqlfluff, …
● Specific to Notebooks: nbqa
● Linting and formatting

Tools:

● Code quality: isort, flake8, black, sqlfluff, …
● Specific to Notebooks: nbqa
● Linting and formatting

1. Tools for software development good practice

2. Version Control & Reviews

Why? Waiting for reviews just slows me down!
Answer: Then you probably need to be slowed down 🙈

2. Version Control & Reviews

Version Control ⟸⟹ Creating dated artifacts

2. Version Control & Reviews

Tools:

● Github
● Git tooling in VS Code, JupyterLab Git extension, hosted Notebook Git tooling

2. Version Control & Reviews

Tools:

● Github
● Git tooling in VS Code, JupyterLab Git extension, hosted Notebook Git tooling
● Git diffs:

○ nbdime

content aware diffs

2. Version Control & Reviews

Tools:

● Github
● Git tooling in VS Code, JupyterLab Git extension, hosted Notebook Git tooling
● Git diffs:

○ nbdime
○ Github diffs (feature preview)

2. Version Control & Reviews

Tools:

● Github
● Git tooling in VS Code, JupyterLab Git extension, hosted Notebook Git tooling
● Git diffs:

○ nbdime
○ Github diffs (feature preview)
○ nbdev

using nbdev Jupyter save hooks

nbdev shoutout

2. Version Control & Reviews

Tools:

● Github
● Git tooling in VS Code, JupyterLab Git extension, hosted Notebook Git tooling
● Git diffs:

○ nbdime
○ Github diffs (feature preview)
○ nbdev
○ ReviewNB

3. Testing

Why? Just write your code correctly!

3. Testing

Why? Just write your code correctly!
Answer:

3. Testing

Tools:

● nbval
● nbmake
● testbook
● pytest-notebook
● nbdev

4. Automating

● Automate your linting
● Automate your testing
● Automate your team norms

○ Even things file naming conventions!

Tools:

● Github actions
● Github pre-commit hooks
● Jupyter save hooks

5. Dependency management

Why? It just adds complexity! I don't want to be spending time on this!

5. Dependency management

Why? It just adds complexity! I don't want to be spending time on this!
Answer: You'll spend time on it for sure, one way or another :)

5. Dependency management

Tools:

● virtual environments
● pinning your requirements

○ requirements.txt
○ pip-compile

● Docker
○ jupyter/base-notebook
○ jupyter/minimal-notebook

6. Data management

Why? I just slack my colleagues the csv's. It works fine.

6. Data management

Why? I just slack my colleagues the csv's. It works fine.
Answer: Yeah, you know it doesn't really work fine :)

6. Data management

Tools:

● Cloud data in any form accessible with python:
○ AWS s3 (boto, pandas)
○ GCP GCS (google cloud python sdk, pandas)
○ GCP BigQuery (google cloud python sdk, pandas)
○ Spark cluster
○ …

● quiltdata
● Github lfs
● dvc

Some final thoughts

● Start with simple dependency management: virtual environments and requirements files
○ For cloud Notebooks, requirements files

● Next, auto formatting and linting (nbqa isort, nba black, nbqa flake8…)
● Next, version control (e.g. Github) and reviews
● Next, automate linting
● Next, data management
● Next, simple end-to-end testing

…

● Then, down the line…
Dockerise? Tooling/frameworks for experiment management? Unit test for modules?
Cookie-cutters?
… And see what new tooling and best practice emerges!

Thank you

References

● Why Jupyter is data scientists’ computational notebook of choice:
https://www.nature.com/articles/d41586-018-07196-1

● Jupyter surveys: https://github.com/jupyter/surveys
● Google Blog - Jupyter Notebook Best Practives:

https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-
any-developer-using-jupyter-notebooks

● Notebook tool reviews: https://datasciencenotebook.org/
● I don't like Notebooks, Joel Grus, JupyterCon 2018:

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?s
lide=id.g362da58057_0_1

● Clean code in Python: https://testdriven.io/blog/clean-code-python/
● Clean-code-python: https://github.com/zedr/clean-code-python
● Python Style Guide, PEP8: https://peps.python.org/pep-0008

https://www.nature.com/articles/d41586-018-07196-1
https://github.com/jupyter/surveys
https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-any-developer-using-jupyter-notebooks
https://cloud.google.com/blog/products/ai-machine-learning/best-practices-that-can-improve-the-life-of-any-developer-using-jupyter-notebooks
https://datasciencenotebook.org/
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/preview?slide=id.g362da58057_0_1
https://testdriven.io/blog/clean-code-python/
https://github.com/zedr/clean-code-python
https://peps.python.org/pep-0008

References: Tools

● nbqa: nbqa.readthedocs.io
● nbdime: nbdime.readthedocs.io
● Github rich Jupyter Notebook diffs:

https://github.blog/changelog/2023-03-01-feature-preview-rich-jupyter-notebook-diffs/
● nbdev: nbdev.fast.ai
● ReviewNB: www.reviewnb.com
● nbval: https://github.com/computationalmodelling/nbval
● pytest.notebook: pytest-notebook.readthedocs.io
● nbmake: https://github.com/treebeardtech/nbmake
● testbook: testbook.readthedocs.io
● Jupyter file save hooks: https://jupyter-notebook.readthedocs.io/en/4.x/extending/savehooks.html
● git hooks: https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
● dvc: dvc.org
● quiltdata: https://github.com/quiltdata/quilt

http://nbqa.readthedocs.io
http://nbdime.readthedocs.io
https://github.blog/changelog/2023-03-01-feature-preview-rich-jupyter-notebook-diffs/
http://nbdev.fast.ai
http://www.reviewnb.com
https://github.com/computationalmodelling/nbval
http://pytest-notebook.readthedocs.io
https://github.com/treebeardtech/nbmake
http://testbook.readthedocs.io
https://jupyter-notebook.readthedocs.io/en/4.x/extending/savehooks.html
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://dvc.org/
https://github.com/quiltdata/quilt

